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crystallization zone was measured with a microthermo-
couple. Then the thermocouple was frozen into the
strip and the temperature distribution of the solid phase
during crystallization was recorded. Measurement of
the phase~transition temperature is necessary, due to
the presence of supercooling, whichdiffers for various
crystallization rates.

The results are given in the table.

We note that Eq. (6) canbeusedto determine super-
cooling, and this is of considerable interest.

NOTATION

u is the extractionrate; Ty, is the melt temperature;
Ty is the phase-transition temperature; 4, is the liquid
phase temperature; 4, is the solid phase temperature,
X is the interface coordinate; K is the thermal con-
ductivity coefficient; @® is the thermal diffusivity coef-
ficient; L is the specific heat of fusion; p is the den~
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g8ity; Xcgle is the calculated value of the interface
coordinate; Xmeag 18 the measured value of the in-
terface coordinate.
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The nonequilibrium-thermodynamics method is used to examine the

kinetics of the liquid-vapor phase tramsition of a pure substance, It is
shown that there is a sharp increase in the pressure-relaxation time in
an isothermic system near the critical point,

For a phase transition of the first kind totake place
at a finite rate it is necessary to change the conditions
for phase equilibrium, for example, to change the
pressure while we hold the temperature constant or
to maintain a certain temperature difference between
phases. However, this situation is often not apparent
because heat transfer and hydrodynamic or diffusion
processes associated with phase transition predomi-
nate.

It has long been known [1] that at low temperatures
the relationship between the evaporation rate and the
pressure difference pg — p is given by

{

i=a@umkl) 7 (p,—p). (1)

In this case, the evaporation rate is low because of
low vapor density, and heat transfer is not a limiting
factor. Retardation of phase transition near the critical
point is due to some other factor. Here the evapora-
tion rate drops because the difference between coexist-
ing phases becomes negligible.

S. L. Rivkin et al. [2, 3] observed the protracted
change (up to 8~10 hours) in water pressure in a two-
phase region under isothermal conditions when Tgp —

— T =~ 1-2° C. If we do not expect equilibrium to be
established, the condensation lines on the p- and v-
diagrams will be inclined. The authors of [3] notethat
this slope is not caused by impurities.

Consider a one-component isolated system con-
sisting of twa isotropic coexisting phases. In the gen-
eral case, we consider that the phase temperatures
and pressures differ and are not equal to their values
in an equilibrium system. We assume that internal
equilibrium in the phases is established much more
rapidly than equilibrium betweenphases, i.e., aquasi-
steady state exists for the discontinuous system. We
apply the fundamental equation of thermodynamics to
each phase:

TdS = dU + pdV — pwdM. (2)

With (2) and the conditions that the mass, volume, and
internal energy of the entire system be constant, we
find the rate of increase in entropy by a direct method:

S:(L-—l\)(;]”-—(_“’ o ‘M"'
7 T T T

Therefore, the mass and energy flows have the form

=M =—L, (—;T—_;,_')Jr

F 1 1
L., —_—,
+ Ly ( e ) (3)
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The flows are referred to a unit area of phase inter-
face. We assume that flow is positive when it is di~
rected toward the second (high-temperature) phase.
As is usual Ljy = Ly;.

When the phase pressures are not equal even at
equilibrium, the following situations can occur:a) small
drops of liquid surrounded by vapor, or vapor bubbles
in the liquid; b) a solid phase, subjected to additional
compression, but freely miscible with the gas or liquid
phase. We ignore related cases and assume that p' =
= pn = p. Then ﬁ'" = U"+ pvn = H",

We consider several examples of the way in which
relationships (3) and (4) can be used, assuming that
the deviations from equilibrium are minor and that
IAT|/T <« 1, |Apl/p < 1. To be specific, we consider
a liquid-vapor system.

1) T'=T"=T = Tg, P = Pg;

L ” ’ L ” !

We have
J2 _ L21 =Q*::h”=l+h(- (5)
Jy Ly

Allowing for the fact that y"(Tg, pg) = ' (T, Pg), We
can represent the difference in chemical potentials as

" ’ a !
W (T, p)—p' (T, p)=—L AT —

0w aro Loy
oT T

For the mass flow we have

Lll

Ji = IAT. (6)
Tz

For a given deviation in temperature from the equilib-
rium value, the mass flow of the evaporating mole-
cules is proportional to the heat of phase transition
and to the term L,,/T%.

2) T'= T"= Tg, p * pg. As in the preceding case,
we expand u about the equilibrium point in powers of
Ap and limit ourselves to the first degree in the ex-
pansion; we then obtain

Ji=— B @ —v)Ap. (7)

Ly
T
Here the mass flow for given Ap is proportional to the
difference in specific volumes of the phases and to
Ly/T.

3) T'=T"=T # Tg, p # pg- This case is a com-
bination of the two preceding ones:

J1=_LL[I,A—T—(U"—U’)A,D]. (8)
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When there is no mass flow it is necessary that

Ap 1

AT =T(v;'—v;) : (©)

This is the well-known Clapeyron-Clausius equation
and applies to the phase-equilibrium line.
4) T' = T" = Tg, p= pg.

i w 1 1
J = ___S —_— L -
1 Lu( T, T ) + L (Ts - —“T, ) (10)

If we substitute Ly = Lyy(I + h') into (10) and expand
i inseries, we obtain expression(6) after minor changes.

In all of the cases considered, the mass flowcorre-
sponds to system "conductivity," which decreases as
the critical point is approached and becomes zero when
vé = vg = Vg, I = 0. Therefore, the time required to
restore phase equilibrium for comparable experimental
conditions must increase greatly near the critical point.

We now construct the kinetic equation for pressure
relaxation in a liquid-vapor system. Isothermic con-
ditions will be used (this was done in Rivkin's experi-
ments).

A small change in the specific vapor volume dv"
results from a pressure change dp = (9p/ov)p dv", This
means that

p=—y - (11)

A v M
7 }W”

— e —

14

be constant, we substitute expression (7) for the mass
flow into (11) and assume that v' = vé, v vy then

. Ly (@ — v
p=(p—p) ——gr—— = —p)v. (12)
Integrating (12) for the conditions p = p;, whent= 0
and p = pg and as t — «©, we obtain a relaxation equa~
tion of the usual form:

P—Ps = (Py— Ps)exp[—p L. (13)
The relaxation time

V"

=g

T=1t=

depends upon the difference in specific volumes of the
phases and on the elasticity coefficient y". As T — Ter
the relaxation time increases extremely rapidly be-
cause both terms approach zero. Thus, the observa-
tions of Rivkin et al can be explained qualitatively
within the framework of ordinary thermodynamic con-
cepts.

Quantitative estimates of T are complicated by the
fact that the kinetic coefficient Ly, is unknown. How-
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ever, for relative estimates over a small interval of
temperatures and pressures we can let Ly = const.
For water, the required experimental data near the
critical point are givenin[4, 3]. Wechoosethree values
for the temperature: T = 365° C, Ty= 372° C, and

T; = 373° C (Typ = 374.15° C). From (14) we obtain
13/Ty = 2.8, T3/7( = 27, without allowing for differences
in the volume of the vapor phase. From [3], we have
75 = 1.5 hr; therefore, 74 = 3 min. The last quantity
is less than the time required to verify that the tem-
perature is constant and to measure the pressure with
a piston manometer.

In this type of experiment it is quite important that
the substance be pure. Impurities not only change the
slope of the condensation line but, near the critical
point, they will also result in a slow drop in pressure
to the equilibrium value with a different and probably
much greater relaxation time than for the pure sub-
stance. This is due to very strong retardation in the
diffusion impurity molecule near the critical point (5, 6].

At low pressures, where (1) is valid, we can find
144 and estimate the relaxation time (14). Allowing for
the fact that i = J;/m and equating the flows in (1) and
{7}, we obtain

(15)

1/2
Ly=ua ( mT ) "

2n k

For water at 100° C we have 7 = 1.25 - 1072 sec for
@ = 0.5 and V" = 100 cm?.

NOTATION

i is the molecular evaporation rate; p is the pres-
sure; ¢ is the condensation coefficient; m is the mass
of a molecule; k is the Boltzmann constant; M is the
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mass of the substance; V is the volume; v is the
specific volume; p is the density; T is the temperature;
U is the internal energy; u is the chemical potential
per unit mass; J; and J, are the mass and energy flows;
Ur = U" + [(p"/T" . p‘/T')/(l/T" - l/T')] VAR

H is the enthalpy; h = H/M; I = h" — h' is the specific
heat of the phase transition; AT = T — Tg; Ap = p — pPg;
vy = —v(8p/8v) is the reciprocal of iosthermic com-
pressibility (the elasticity coefficient); t is the time;

7 is the relaxation time. Quantities with one prime
pertain to a liquid and those with double primes to a
vapor. Quantities with the subscript s refer to the
saturation line. Differentiation with respect to time

is denoted by a dot.
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It is shown that for pulsed thermal loads on the boundary between a
solid and liquid helium most of the heat transfer takes place to the
liquid helium; consequently, such transfer mainly depends on the
helium temperature, The phenomena accompanying this process
are discussed.

When studying phenomena occurring in metals and
semiconductors due to low-duration current pulses,
we encounter a number of cases in which the Joule
heat liberated determines the kinetics of the processes
observed, particularly at liquid-helium temperatures.
However, an analysis of thermal balance forthepulsed
mode with large specific heat loads for precisely this
temperature range was previously lacking inthe litera-

ture. Given such a state for film superconductors on

a dielectric backing, the solutiontothe problem essen-
tially reduces to determiningthe effective heattransfer
in the steady-state mode by using average values for
the corresponding quantities. Calculations of such a
type also lead to the conclusion that it is not necessary
to allow for heat transfer directly from the film tothe
helium since the thermal conductivity of helium is
much lower than that of the backings used [1].

In several articles [2, 3], only non-steady-state pro-
cesses in a backing are considered, and heat transfer
to helium is allowed for by means of parameters char-
acteristic of the steady-state mode at low thermal loads.



